An Invariant Subspace Theorem
نویسندگان
چکیده
for every rational function ƒ with poles off K. In this note it is shown that any operator for which the spectrum is a spectral set has a nontrivial invariant subspace. In [6] von Neumann introduced the notion of spectral set and showed that if T has II T\\ = 1 then the closed unit disc, D"~, is a spectral set for T. For this reason any operator whose spectrum is a spectral set is called a von Neumann operator. Hence if II 711 = 1 and o(T) = D~ then T is a von Neumann operator. If T or 7* is a subnormal operator then T is a von Neumann operator. Thus the result of this note generalizes the recent result of Scott Brown [1] that every subnormal operator has an invariant subspace, although the proof relies heavily on his techniques. We wish here to thank him for an early manuscript containing his results.
منابع مشابه
The Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملLomonosov’s Invariant Subspace Theorem for Multivalued Linear Operators
The famous Lomonosov’s invariant subspace theorem states that if a continuous linear operator T on an infinite-dimensional normed space E “commutes” with a compact operator K 6= 0, i.e., TK = KT, then T has a non-trivial closed invariant subspace. We generalize this theorem for multivalued linear operators. We also provide some applications to singlevalued linear operators.
متن کاملWeak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملTranslation invariant mappings on KPC-hypergroups
In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.
متن کاملModeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملHausdorff property of the Zucker extension at the monodromy invariant subspace
We prove the Hausdorff property at the monodromy invariant subspace of the Zucker extension of the family of intermediate Jacobians if the divisor at infinity is smooth. Using a recent theorem of Green, Griffiths and Kerr, it implies in this case the analyticity of the closure of the zero locus of an admissible normal function, generalizing a theorem of Brosnan and Pearlstein in the curve case ...
متن کامل